
LA-UR-21-22408
Approved for public release; distribution is unlimited.

Title: Understanding HPC Benchmark Performance on Intel Broadwell and Cascade
Lake Processors

Author(s): Bishop, Alan

Intended for: past publication

Issued: 2021-03-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Understanding HPC Benchmark
Performance on Intel Broadwell
and Cascade Lake Processors

Christie L. Alappat1, Johannes Hofmann2, Georg Hager1(B), Holger Fehske3,
Alan R. Bishop4, and Gerhard Wellein1,2

1 Erlangen Regional Computing Center (RRZE), 91058 Erlangen, Germany
georg.hager@fau.de

2 Department of Computer Science, University of Erlangen-Nuremberg,
91058 Erlangen, Germany

3 Institute of Physics, University of Greifswald, 17489 Greifswald, Germany
4 Science, Technology and Engineering Directorate,
Los Alamos National Laboratory, Los Alamos, USA

Abstract. Hardware platforms in high performance computing are con-
stantly getting more complex to handle even when considering multicore
CPUs alone. Numerous features and configuration options in the hard-
ware and the software environment that are relevant for performance are
not even known to most application users or developers. Microbench-
marks, i.e., simple codes that fathom a particular aspect of the hard-
ware, can help to shed light on such issues, but only if they are well
understood and if the results can be reconciled with known facts or per-
formance models. The insight gained from microbenchmarks may then
be applied to real applications for performance analysis or optimization.
In this paper we investigate two modern Intel x86 server CPU archi-
tectures in depth: Broadwell EP and Cascade Lake SP. We highlight
relevant hardware configuration settings that can have a decisive impact
on code performance and show how to properly measure on-chip and
off-chip data transfer bandwidths. The new victim L3 cache of Cascade
Lake and its advanced replacement policy receive due attention. Finally
we use DGEMM, sparse matrix-vector multiplication, and the HPCG
benchmark to make a connection to relevant application scenarios.

Keywords: Benchmarking · Microbenchmarking · x86 · Intel

1 Introduction

Over the past few years the field of high performance computing (HPC) has
received attention from different vendors, which led to a steep rise in the number
of chip architectures. All of these chips have different performance-power-price
points, and thus different performance characteristics. This trend is believed to
continue in the future with more vendors such as Marvell, Huawei, and Arm

c© The Author(s) 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 412–433, 2020.
https://doi.org/10.1007/978-3-030-50743-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_21

Understanding HPC Benchmark Performance 413

entering HPC and related fields with new designs. Benchmarking the architec-
tures to understand their characteristics is pivotal for informed decision making
and targeted code optimization. However, with hardware becoming more diverse,
proper benchmarking is challenging and error-prone due to wide variety of avail-
able but often badly documented tuning knobs and settings.

In this paper we explore two modern Intel server processors, Cascade Lake
SP and Broadwell EP, using carefully developed micro-architectural benchmarks,
then show how these simple microbenchmark codes become relevant in applica-
tion scenarios. During the process we demonstrate the different aspects of proper
benchmarking like the importance of appropriate tools, the danger of black-box
benchmark code, and the influence of different hardware and system settings. We
also show how simple performance models can help to draw correct conclusions
from the data.

Our microbenchmarking results highlight the changes from the Broadwell to
the Cascade Lake architecture and their impact on the performance of HPC
applications. Probably the biggest modification in this respect was the introduc-
tion of a new L3 cache design.

This paper makes the following relevant contributions:

– We show how proper microarchitectural benchmarking can be used to reveal
the cache performance characteristics of modern Intel processors. We compare
the performance features of two recent Intel processor generations and resolve
inconsistencies in published data.

– We analyze the performance impact of the change in the L3 cache design
from Broadwell EP to Skylake/Cascade Lake SP and investigate potential
implications for HPC applications (effective L3 size, scalability).

– For DGEMM we show the impact of varying core and Uncore clock speed,
problem size, and sub-NUMA clustering on Cascade Lake SP.

– For a series of sparse matrix-vector multiplications we show the consequence
of the nonscalable L3 cache and the benefit of the enhanced effective L3 size
on Cascade Lake SP.

– To understand the performance characteristics of the HPCG benchmark, we
construct and validate the roofline model for all its components and the full
solver for the first time. Using the model we identify an MPI desynchroniza-
tion mechanism in the implementation that causes erratic performance of one
solver component.

This paper is organized as follows. After describing the benchmark systems setup
in Sect. 2, microarchitectural analysis using microbenchmarks (e.g., load and
copy kernels and STREAM) is performed in Sect. 3 to 5. In Sect. 6 we then revisit
the findings and see how they affect code from realistic applications. Section 7
concludes the paper.

Related Work. There is a vast body of research on benchmarking of HPC sys-
tems. The following papers present and analyze microbenchmark and application
performance data in order to fathom the capabilities of the hardware.

414 C. L. Alappat et al.

Molka et al. [17] used their BenchIT microbenchmarking framework to thor-
oughly analyze latency and bandwidth across the full memory hierarchy of Intel
Sandy Bridge and AMD Bulldozer processors, but no application analysis or per-
formance modeling was done. Hofmann et al. [9,11] presented microbenchmark
results for several Intel server CPUs. We extend their methodology towards Cas-
cade Lake SP and also focus on application-near scenarios. Saini et al. [20,21]
compared a range of Intel server processors using diverse microbenchmarks,
proxy apps, and application codes. They did not, however, provide a thorough
interpretation of the data in terms of the hardware architectures. McIntosh-
Smith et al. [15] compared the Marvell ThunderX2 CPU with Intel Broadwell
and Skylake using STREAM, proxy apps, and full applications, but without
mapping architectural features to microbenchmark experiments. Recently, Ham-
mond et al. [6,7] performed a benchmark analysis of the Intel Skylake and Mar-
vell ThunderX2 CPUs, presenting results partly in contradiction to known hard-
ware features: Cache bandwidths obtained with standard benchmark tools were
too low compared to theoretical limits, the observed memory bandwidth with
vectorized vs. scalar STREAM was not interpreted correctly, and matrix-matrix-
multiplication performance showed erratic behavior. A deeper investigation of
these issues formed the seed for the present paper. Finally, Marjanović et al. [13]
attempted a performance model for the HPCG benchmark; we refine and extend
their node-level model and validate it with hardware counter data.

2 Testbed and Environment

All experiments were carried out on one socket each of Intel’s Broadwell-EP
(BDW) and Cascade Lake-SP (CLX) CPUs. These represent previous- and
current-generation models in the Intel line of architectures, which encompass
more than 85% of the November 2019 top500 list. Table 1 summarizes key
specifications of the testbed. Measurements conducted on a Skylake-SP Gold-
6148 (SKX) machine are not presented as the results were identical to CLX
(successor) in all the cases.

The Broadwell-EP architecture has a three-level inclusive cache hierarchy.
The L1 and L2 caches are private to each core and the L3 is shared. BDW
supports the AVX2 instruction set, which is capable of 256-bit wide SIMD. The
Cascade Lake-SP architecture has a shared non-inclusive victim L3 cache. The
particular model in our testbed supports the AVX-512 instruction set and has
512-bit wide SIMD. Both chips support the “Cluster on Die [CoD]” (BDW)
or “Sub-NUMA Clustering [SNC]” (CLX) feature, by which the chip can be
logically split in two ccNUMA domains.

Unless otherwise specified, hardware prefetchers were enabled. For all
microbenchmarks the clock frequency was set to the guaranteed attainable fre-
quency of the processor when all the cores are active, i.e., 1.6 GHz for CLX
and 2.0 GHz for BDW. For real application runs, Turbo mode was activated.
The Uncore clock speed was always set to the maximum possible frequency of
2.4 GHz on CLX and 2.8 GHz on BDW.

Understanding HPC Benchmark Performance 415

Both systems ran Ubuntu version 18.04.3 (Kernel 4.15.0). The Intel com-
piler version 19.0 update 2 with the highest optimization flag (-O3) was used
throughout. Unless otherwise stated, we added architecture-specific flags -xAVX
(-xCORE-AVX512 -qopt-zmm-usage=high) for BDW (CLX). For experiments
that use MKL and MPI libraries we used the version that comes bundled
with the Intel compiler. The LIKWID tool suite in version 4.3 was used for
performance counter measurements and benchmarking (likwid-perfctr and
likwid-bench). Note that likwid-bench generates assembly kernels automati-
cally, providing full control over the executed code.

Table 1. Key specification of test bed machines.

Microarchitecture Broadwell-EP (BDW) Cascade Lake-SP (CLX)

Chip Model Xeon E5-2697 v4 Xeon Gold 6248

Supported core freqs 1.2–3.6 GHz 1.2–3.9 GHz

Supported Uncore freqs 1.2–2.8 GHz 1.0–2.4 GHz

Cores/Threads 18/36 20/40

Latest SIMD extension AVX2/FMA AVX-512

L1 cache capacity 18 × 32 KiB 20 × 32 KiB

L2 cache capacity 18 × 256 KiB 20 × 1 MiB

L3 cache capacity 45MiB (18 × 2.5 MiB) 27.5 MiB (20 × 1.375 MiB)

Memory Configuration 4 ch. DDR4-2400 6 ch. DDR4-2933

LD/ST throughput 2 LD, 1 ST (AVX) 2 LD, 1 ST (AVX512)

L1 - L2 bandwidth 64 B/cy 64 B/cy

L2 - L3 bandwidth 32 B/cy 16 B/cy + 16 B/cy

Theor. Mem. Bandwidth 76.8 GB/s 140.8 GB/s

Operating system Ubuntu 18.04.3 Ubuntu 18.04.3

Compiler Intel 19.0 update 2 Intel 19.0 update 2

Influence of Machine and Environment Settings. The machine and envi-
ronment settings are a commonly neglected aspect of benchmarking. Since they
can have a decisive impact on performance, all available settings must be docu-
mented. Figure 1(a) shows the influence of different operating system (OS) set-
tings on a serial load-only benchmark running at 1.6 GHz on CLX for different
data-set sizes in L3 and memory. With the default OS setting (NUMA bal-
ancing on and transparent huge pages (THP) set to “madvise”), we can see a
2× hit in performance for big data sets. The influence of these settings can be
seen for multi-core runs (see Fig. 1(a) right) where a difference of 12% is observed
between the best and default setting on a full socket. This behavior also strongly
depends on the OS version. We observed it with Ubuntu 18.04.3 (see Table 1).
Consequently, we use the setting that gives highest performance, i.e., NUMA
balancing off and THP set to “always,” for all subsequent experiments.

416 C. L. Alappat et al.

10MB 100MB 1GB
Data-set size

0

5

10

15

20

25

B
an

dw
id

th
 [

G
B

/s
]

NUMA bal - off, THP - always
NUMA bal - on, THP - madvise
NUMA bal - on, THP - always
NUMA bal - off, THP - madvise

0 5 10 15 20
Active cores

0

40

80

120

(a) Influence of OS settings

10MB 100MB 1GB
Data-set size

0

5

10

15

20

25

B
an

dw
id

th
 [

G
B

/s
] SNC - on

SNC - off

10

11

12

(b)

(b) Influence of SNC

Fig. 1. (a) Performance impact of NUMA balancing and transparent huge pages (THP)
on a load-only streaming benchmark on CLX. The left figure in (a) shows the single
core performance over different data set sizes for various OS settings. The right figure in
(a) shows the performance influence of the best and worst setting for different number
of cores with a data-set size of 3 GB per core. (b) Performance effect of sub-NUMA
clustering (SNC) on single core for the same load-only benchmark. For the experiment
in (a) SNC was enabled and in (b) NUMA balancing was disabled and THP set to
“always.”

Modern systems have an increasing number of knobs to tune on system
startup. Figure 1(b) shows the consequences of the sub-NUMA clustering (SNC)
feature on CLX for the load-only benchmark. With SNC active the single core
has local access to only one sub-NUMA domain causing the shared L3 size to
be halved. For accesses from main memory, disabling SNC slightly reduces the
single core performance by 4% as seen in the inset of Fig. 1(b).

3 Single-Core Bandwidth Analysis

Single-core bandwidth analysis is critical to understand the machine character-
istics and capability for a wide range of applications, but it requires great care
especially when measuring cache bandwidths since any extra cycle will directly
change the result. To show this we choose the popular bandwidth measurement
tool lmbench [16]. Figure 2 shows the load-only (full-read or frd) bandwidth
obtained by lmbench as a function of data set size on CLX at 1.6 GHz. Ten runs
per size are presented in a box-and-whisker plot.

Theoretically, one core is capable of two AVX-512 loads per cycle for an L1
bandwidth of 128 byte/cy (204.8 Gbyte/s @ 1.6 GHz). However, with the compiler
option -O2 (default setting) it deviates by a huge factor of eight (25.5 Gbyte/s)
from the theoretical limit. The characteristic strong performance gap between
L1 and L2 is also missing. Therefore, we tested different compiler flags and
compilers to see the effect (see Fig. 2) and observed a large span of performance
values. Oddly, increasing the level of optimization (-O2 vs -O3) dramatically
decreases the performance. The highest bandwidth was attained for -O2 with
the architecture-specific flags mentioned in Sect. 2. A deeper investigation reveals

Understanding HPC Benchmark Performance 417

0

20

40

60

80

100

120

140

B
an

dw
id

th
 [

B
/c

y]

load_avx512 (likwid-bench)
gcc -O
icc -O2
icc -O2 -xCORE-AVX512
icc -O2 -xCORE-AVX512 -zmm-flag*
" w/o adequate runtime
icc -O3 -xCORE-AVX512
icc -O3 -xCORE-AVX512 -zmm-flag*

10 100 1000 10000
Data set (kB)

0

40

80

120

160

200

B
an

dw
id

th
 [

G
B

/s
]

@
 1

.6
 G

H
z

load_avx512 (likwid-bench)
gcc -O
icc -O2
icc -O2 -xCORE-AVX512
icc -O2 -xCORE-AVX512 -zmm-flag*
same as above w/o adequate runtime
icc -O3 -xCORE-AVX512
icc -O3 -xCORE-AVX512 -zmm-flag*

204.8 GB/s = 128 B/cy

Fig. 2. Load-only bandwidth as a function of data set size on CLX. The plot compares
the bandwidth obtained from likwid-bench with that of lmbench. likwid-bench is
able to achieve 88% of the theoretical L1 bandwidth limit (128 byte/cy). The extreme
sensitivity of lmbench benchmark results to compilers and compiler flags is also shown.
The “zmm-flag*” refers to the compiler flag -qopt-zmm-usage=high.

that this problem is due to compiler inefficiency and the nature of the benchmark.
The frd benchmark performs a sum reduction on an integer array; in the source
code, the inner loop is manually unrolled 128 times. With -O2 optimization, the
compiler performs exactly 128 ADD operations using eight AVX-5121 integer
ADD instructions (vpaddd) on eight independent registers. After the loop, a
reduction is carried out among these eight registers to accumulate the scalar
result. However, with -O3 the compiler performs an additional 16-way unrolling
on top of the 128-way manual unrolling and generates sub-optimal code with a
long dependency chain and additional instructions (blends, permutations) inside
the inner loop, degrading the performance. The run-to-run variability of the
highest-performing lmbench variant is also high in the default setting (cyan
line). This is due to an inadequate number of warmup runs and repetitions in
the default benchmark setting; increasing the default values (to ten warmup runs
and 100 repetitions) yields stable measurements (blue line).

We are forced to conclude that the frd benchmark does not allow any pro-
found conclusions about the machine characteristics without a deeper investiga-
tion. Thus, lmbench results for frd (e.g., [6,7,20,21]) should be interpreted with
due care. However, employing proper tools one can attain bandwidths close to
the limits. This is demonstrated by the AVX-512 load-only bandwidth results
obtained using likwid-bench [24]. As seen in Fig. 2, with likwid-bench we get
88% of the theoretical limit in L1, the expected drops at the respective cache
sizes, and much less run-to-run variations.

1 16 integer elements in an AVX512 register.

418 C. L. Alappat et al.

Load Copy
0

50

100

B
an

dw
id

th
[B

/c
y]

CLX-AVX512 CLX-AVX CLX-SSE CLX-SCALAR BDW-AVX

(a) L1

Load Copy
0

20

40

(b) L2

Load Copy
0

5

10

(c) L3

Load Copy
0

2

4

6

8

(d) MEM

11
.4

7
G

B
/s

11
.7

G
B

/s

12
.1

6
G

B
/s

9.
32

G
B

/s

Fig. 3. Single-core bandwidth measurements in all memory hierarchy levels for load-
only and copy benchmarks (likwid-bench). The bandwidth is shown in byte/cy, which
is a frequency-agnostic unit for L1 and L2 cache. For main memory, the bandwidth in
Gbyte/s at the base AVX512/AVX clock frequency of 1.6 GHz/2GHz for CLX/BDW
is also indicated. Different SIMD widths are shown for CLX in L1. Horizontal lines
denote theoretical upper bandwidth limits.

Figure 3 shows application bandwidths2 from different memory hierarchy lev-
els of BDW and CLX (load-only and copy kernels). The core clock frequency was
fixed at 1.6 and 2 GHz for CLX and BDW, respectively, with SNC/CoD switched
on. The bandwidth is shown in byte/cy, which makes it independent of core clock
speed for L1 and L2 caches. Conversion to Gbyte/s is done by multiplying the
byte/cy value with the clock frequency in GHz. The effect of single-core L1 band-
width for scalar and different SIMD width is also shown in Fig. 3(a) for CLX.
It can be seen that the bandwidth reduces by 2× as expected when the SIMD
width is halved each time.

4 Intel’s New Shared L3 Victim Cache

From BDW to CLX there are no major observable changes to the behavior of L1
and L2 caches, except that the L2 cache size has been significantly extended in
CLX. However, starting from Skylake (SKX) the L3 cache has been redesigned.
In the following we study the effects of this newly designed non-inclusive victim
L3 cache.

4.1 L3 Cache Replacement Policy

A significant change with respect to the L3 cache concerns its replacement pol-
icy. Since SNB, which used a pseudo-LRU replacement strategy [1], new Intel
microarchitectures have implemented dynamic replacement policies [8] which

2 Application bandwidth refers to the bandwidth as seen by the application without
the inclusion of hidden data traffic like write-allocate transfers.

Understanding HPC Benchmark Performance 419

1 2 401 10
Data-set size as multiple of L3 size

0

20

40

60

80

100
L

3
hi

t r
at

e
[%

]
IVB
BDW
CLX

3.8

(a) L3 cache hit rate

10MB 100MB 1GB
Data-set size

0

5

10

15

20

25

B
an

dw
id

th
 [

G
B

/s
]

L
3

si
ze

 (
27

.5
M

B
)

(b) Memory Bandwidth

Fig. 4. (a) Demonstration of the implications of the change in cache-replacement policy
across processor generations using the L3-cache hit rate. (b) Bandwidth for a load-only
data-access pattern on CLX (using likwid-bench). In (a), data for the older Intel Ivy
Bridge Xeon E5-2690 v2 (IVB) is included for reference.

continuously improved the cache hit rate for streaming workloads from gen-
eration to generation. Instead of applying the same pseudo-LRU policy to all
workloads, post-SNB processors make use of a small amount of dedicated leader
sets, each of which implements a different replacement policy. During execution,
the processor constantly monitors which of the leader sets delivers the highest
hit rate, and instructs all remaining sets (also called follower sets) to use the
best-performing leader set’s replacement strategy [19].

Experimental analysis suggests that the replacement policy selected by the
processor for streaming access patterns involves placing new cache lines only in
one of the ways of each cache set; the same strategy is used when prefetching
data using the prefetchnta instruction (cf. Section 7.6.2.1 in [1]). Consequently,
data in the remaining ten ways of the sets will not be preempted and can later
be reused.

Figure 4(a) demonstrates the benefit of this replacement policy by comparing
it to previous generations’ L3 caches. The figure shows the L3-cache hit rate3

for different data-set sizes on different processors for a load-only data access
pattern. To put the focus on the impact of the replacement policies on the
cache hit rate, hardware prefetchers were disabled during these measurements.
Moreover, data-set sizes are normalized to compensate the processors’ different
L3-cache capacities. The data indicates that older generations’ L3 caches offer
no data reuse for data set sizes of two times the cache capacity, whereas CLX’s
L3 delivers hit rates of 20% even for data sets almost four times its capacity.
Reuse can by detected even for data sizes more than ten times the L3 cache size
on CLX.

The fact that this improvement can also be observed in practice is demon-
strated in Fig. 4(b), which shows measured bandwidth for the same load-only

3 Based on performance-counter data for the MEM LOAD RETIRED L3 HIT and MISS

events.

420 C. L. Alappat et al.

0 2 4 6 8 10 12 14 16 18 20
Active cores

0

100

200

300

400

500

B
an

dw
id

th
 [

G
B

/s
]

CLX
BDW
SNC/COD ON
SNC/COD OFF

ε=0.94

ε=0.98
ε=0.67

ε=0.72

(a) Load

0 2 4 6 8 10 12 14 16 18 20
Active cores

ε=0.91

ε=0.97

ε=0.68

ε=0.64

(b) Copy

0 2 4 6 8 10 12 14 16 18 20
Active cores

ε=0.7

ε=0.73
ε=0.96

ε=0.91

(c) Update

Fig. 5. L3 bandwidth of load, copy, and update benchmarks measured on CLX and
BDW. The saturation of L3 bandwidth on CLX architecture can be clearly seen. The
parallel efficiency of each NUMA domain is further labeled in the plot.

data-access pattern on CLX. For this measurement, all hardware prefetchers were
enabled. The data indicates that the L3-cache hit-rate improvements directly
translate into higher-than-memory bandwidths for data sets well exceeding the
L3 cache’s capacity.

4.2 L3 Scalability

Starting from Intel’s Sandy Bridge architecture (created in 2011) the shared L3
cache of all the Intel architectures up to Broadwell is known to scale very well
with the number of cores [11]. However, with SKX onwards the L3 cache archi-
tecture has changed from the usual ring bus architecture to a mesh architecture.
Therefore in this section we test the scalability of this new L3 cache.

In order to test the L3 scalability we use again the likwid-bench tool and run
the benchmark with increasing number of cores. The data-set size was carefully
chosen to be 2 MB per core to ensure that the size is sufficiently bigger than the
L2 cache however small enough such that no significant data traffic is incurred
from the main memory.

The application bandwidths of the three basic kernels load-only, copy and
update are shown in Fig. 5 for CLX and BDW. As the update kernel has equal
number of loads and stores it shows the maximum attainable performance on
both architectures. Note that also within cache hierarchies write-allocate trans-
fers occur leading to lower copy application bandwidth. The striking difference
between CLX and BDW for load-only bandwidth can finally be explained by the
bi-directional L2-L3 link on CLX which only has half the load-only bandwidth
of BDW (see Table 1).

In terms of scalability we find that the BDW scales almost linearly and
attains an efficiency within 90%, proving that the BDW has an almost perfectly
scalable L3 cache. However, with CLX this behavior has changed drastically
and the L3 cache saturates at higher core counts both with and without SNC

Understanding HPC Benchmark Performance 421

enabled, yielding an efficiency of about 70%. Consequently, for applications that
employ L3 cache blocking it might be worthwhile to consider L2 blocking instead
on SKX and CLX. Applications that use the shared property of L3 cache like
some of the temporal blocking schemes [12,25] might exhibit a similar saturation
effect as in Fig. 5.

The effect of SNC/COD mode is also shown in Fig. 5, with dotted lines
corresponding to SNC off mode and solid to SNC on mode. For CLX with SNC
off mode the bandwidth attained at half of the socket (ten threads) is higher than
SNC on mode. This is due to the availability of 2× more L3 tiles and controllers
with SNC off mode.

5 Multi-core Scaling with STREAM

The STREAM benchmark [14] measures the achievable memory bandwidth of a
processor. Although the code comprises four different loops, their performance
is generally similar and usually only the triad (A(:)=B(:)+s*C(:)) is reported.
The benchmark output is a bandwidth number in Mbyte/s, assuming 24 byte
of data traffic per iteration. The rules state that the working set size should
be at least four times the LLC size of the CPU. In the light of the new LLC
replacement policies (see Sect. 4.1), this appears too small and we chose a 2 GB
working set for our experiments.

Since the target array A causes write misses, the assumption of the benchmark
about the code balance is wrong if write-back caches are used and write-allocate
transfers cannot be avoided. X86 processors feature nontemporal store instruc-
tions (also known as streaming stores), which bypass the normal cache hierarchy
and store into separate write-combine buffers. If a full cache line is to be writ-
ten, the write-allocate transfer can thus be avoided. Nontemporal stores are only
available in SIMD variants on Intel processors, so if the compiler chooses not to
use them (or is forced to by a directive or a command line option), write-allocates
will occur and the memory bandwidth available to the application is reduced.
This is why vectorization appears to be linked with better STREAM bandwidth,
while it is actually the nontemporal store that cannot be applied for scalar code.
Note that a careful investigation of the impact of write-allocate policies is also
required on other modern processors such as AMD- or ARM-based systems.4

Figure 6 shows the bandwidth reported by the STREAM triad benchmark
on BDW and CLX with (a,b) and without (c) CoD/SNC enabled. There are
three data sets in each graph: full vectorization with the widest supported SIMD
instruction set and standard stores (ST), scalar code, and full vectorization with
nontemporal stores (NT). Note that the scalar and “ST” variants have very simi-
lar bandwidth, which is not surprising since they both cause write-allocate trans-
fers for an overall code balance of 32 byte/it. The reported saturated bandwidth
of the “NT” variant is higher because the memory interface delivers roughly the
4 For example, on the Marvell ThunderX2 and many other ARM-based architectures,

an automatic detection of streaming patterns can be activated that allows to avoid
the write-allocate by claiming cache lines directly at the L2 cache [4].

422 C. L. Alappat et al.

5 10 15 20
Number of active cores

0

20

40

60

80

100

R
ep

or
te

d
pe

rf
or

m
an

ce
 [

G
B

/s
]

BDW, AVX2, ST
BDW, scalar
BDW, AVX2, NT
CLX, AVX512, ST
CLX, scalar
CLX, AVX512, NT

(a) CoD/SNC enabled, compact

5 10 15 20
Number of active cores

0

20

40

60

80

100

R
ep

or
te

d
pe

rf
or

m
an

ce
 [

G
B

/s
]

(b) CoD/SNC enabled, scatter

5 10 15 20
Number of active cores

0

20

40

60

80

100

R
ep

or
te

d
pe

rf
or

m
an

ce
 [

G
B

/s
]

(c) CoD/SNC disabled

Fig. 6. STREAM triad scaling on BDW (closed symbols) and CLX (open sym-
bols) with (a) CoD/SNC enabled and compact pinning of threads to cores,
(b) CoD/SNC enabled and scattered pinning of threads to cores, and (c)
CoD/SNC disabled. “NT” denotes the use of nontemporal stores (enforced by the
-qopt-streaming-stores always), with “ST” the compiler was instructed to avoid
them (via -qopt-streaming-stores never), and the “scalar” variant used non-SIMD
code (via -no-vec). The working set was 2 GB. Core/Uncore clock speeds were set to
1.6 GHz/2.4 GHz on CLX and 2.0 GHz/2.8 GHz on BDW to make sure that no auto-
matic clock speed reduction can occur. Note that the “scattered” graphs start at two
cores.

same bandwidth but the code balance is only 24 byte/it. This means that the
actual bandwidth is the same as the reported bandwidth; with standard stores,
it is a factor of 4/3 higher. In case of BDW, the NT store variant thus achieves
about the same memory bandwidth as the ST and scalar versions, while on CLX
there is a small penalty. Note that earlier Intel processors like Ivy Bridge and
Sandy Bridge also cannot attain the same memory bandwidth with NT stores
as without. The difference is small enough, however, to still warrant the use of
NT stores in performance optimization whenever the store stream(s) require a
significant amount of bandwidth.

The peculiar shape of the scaling curve with CoD or SNC enabled and “com-
pact” pinning (filling the physical cores of the socket from left to right, see
Fig. 6(a)) is a consequence of the static loop schedule employed by the OpenMP
runtime. If only part of the second ccNUMA domain is utilized (i.e., between 10
and 17 cores on BDW and between 11 and 19 cores on CLX), all active cores will
have the same workload, but the cores on the first, fully occupied domain have
less bandwidth available per core. Due to the implicit barrier at the end of the
parallel region, these “slow” cores take longer to do their work than the cores
on the other domain. Hence, over the whole runtime of the loop, i.e., including
the waiting time at the barrier, each core on the second domain runs at the
average performance of a core on the first domain, leading to linear scaling. A
“scattered” pinning strategy as shown in Fig. 6(b) has only one saturation curve,

Understanding HPC Benchmark Performance 423

10000 20000 30000 40000 50000
Problem size N

0

400

800

1200

1600
Pe

rf
or

m
an

ce
 [

G
Fl

op
/s

]

(a) Performance influence on problem size

4 8 12 16 20
Number of active cores

0

400

800

1200

1600

Pe
rf

or
m

an
ce

 [
G

Fl
op

/s
]

theor. limit (Turbo)

theor. limit (1.6 GHz)

1.6 GHz, SNC off
Turbo, SNC on

Turbo, SNC off

(b) Scaling performance

Fig. 7. DGEMM performance subject to (a) problem size N and (b) number of active
cores for N = 40,000. (Color figure online)

of course. Note that the available saturated memory bandwidth is independent
of the CoD/SNC setting for both CPUs.

6 Implications for Real-World Applications

In the previous sections we discussed microbenchmark analysis of the two
Intel architectures. In the following we demonstrate how these results reflect
in real applications by investigating important kernels such as DGEMM, sparse
matrix-power-vector multiplication, and HPCG. According to settings used in
production-level HPC runs, we use Turbo mode and switch off SNC unless spec-
ified otherwise. Statistical variations for ten runs are shown whenever the fluc-
tuations are bigger than 5%.

6.1 DGEMM—Double-Precision General Matrix-Matrix
Multiplication

If implemented correctly, DGEMM is compute-bound on Intel processors. Each
CLX core is capable of executing 32 floating-point operations (flops) per cycle
(8 DP numbers per AVX-512 register, 16 flops per fused multiply-add (FMA)
instruction, 32 flops using both AVX-512 FMA units). Running DGEMM on
all twenty cores, the processor specimen from the testbed managed to sus-
tain a frequency of 2.09 GHz. The upper limit to DGEMM performance is thus
1337.6 Gflop/s.

Figure 7(a) compares measured full-chip performance of Intel MKL’s
DGEMM implementation on CLX in Turbo mode (black line) to theoretical
peak performance (dashed red line). The data indicates that small values of N
are not suited to produce meaningful results. In addition to resulting in sub-
optimal performance, values of N below 10,000 lead to significant variance in
measurements, as demonstrated for N = 4096 using a box-plot representation
(and reproducing the results from [7]).

424 C. L. Alappat et al.

Figure 7(b) shows measured DGEMM performance with respect to the num-
ber of active cores. When the frequency is fixed (in this case at 1.6 GHz, which is
the frequency the processor guarantees to attain when running AVX-512 enabled
code on all its cores), DGEMM performance scales all but perfectly with the
number of active cores (black line). Consequently, the change of slope in Turbo
mode stems solely from a reduction in frequency when increasing the number of
active cores. Moreover, the data shows that SNC mode is slightly detrimental to
performance (blue vs. green line).

Similar performance behavior can be observed on Haswell-based processors,
which have been studied in [10]. However, on Haswell a sensitivity of DGEMM
performance to the Uncore frequency could be observed [11]: When running
cores in Turbo mode, increasing the Uncore frequency resulted in a decrease of
the share of the processor’s TDP available to the cores, which caused them to
lower their frequency. On CLX this is no longer the case. Running DGEMM on
all cores in Turbo mode results in a clock frequency of 2.09 GHz independent
of the Uncore clock. Analysis using hardware events suggests that the Uncore
clock is subordinated to the core clock: Using the appropriate MSR (0x620),
the Uncore clock can only be increased up to 2.4 GHz. There are, however, no
negative consequences of this limitation. Traffic analysis in the memory hierarchy
indicates that DGEMM is blocked for the L2 cache, so the Uncore clock (which
influences L3 and memory bandwidth) plays no significant role for DGEMM.

6.2 SpMPV – Sparse Matrix-Power-Vector Multiplication

The SpMPV benchmark (see Algorithm 1) computes y = Apx, where A is a
sparse matrix, as a sequence of sparse matrix-vector products. The SpMPV
kernel is used in a wide range of numerical algorithms like Chebyshev filter
diagonalization for eigenvalue solvers [18], stochastic matrix-function estimators
used in big data applications [22], and numerical time propagation [23].

The sparse matrix is stored in the compressed row storage (CRS) format
using double precision, and we choose p = 4 in our experiments. For the basic
sparse matrix vector (SpMV) kernel we use the implementation in Intel MKL
19.0.2. The benchmark is repeated multiple times to ensure that it runs for at
least one second, so we report the average performance over many runs.

We selected five matrices from the publicly available SuiteSparse Matrix
Collection [5]. The choice of matrices was motivated by some of the hardware
properties (in particular L3 features) as investigated in previous sections via
microbenchmarks. The details of the chosen matrices are listed in Table 2. The
matrices were pre-processed with reverse Cuthill-McKee (RCM) to attain bet-
ter data locality; however, all performance measurements use the pure SpMPV
execution time, ignoring the time taken for reordering.

L3 Scalability. Figure 8a shows the performance scaling of the ct20stif matrix
on CLX and BDW. This matrix is just 32 MB in size and fits easily into the caches
of both processors. Note that even though CLX has just 27.5 MiB of L3, it is

Understanding HPC Benchmark Performance 425

Algorithm 1. SpMPV algorithm: y = Apx

1: double :: A[nnz]
2: double :: y[p + 1][nrows], x[nrows]
3: y[0][∗] = x[∗]
4: for i = 1 : p do
5: y[i][∗] = A ∗ y[i − 1][∗]

a non-inclusive victim cache. The applicable cache size using all cores is thus
the aggregate L2/L3 cache size, 47.5 MiB. The L3 bandwidth saturation of CLX
as shown in Sect. 4.2 is reflected by the performance saturation in the SpMPV
benchmark. For this matrix, BDW performs better than CLX since the sparse
matrix kernel is predominantly load bound and limited by the bandwidth of the
load-only microbenchmark (see Fig. 5a).

Despite this advantage, the in-cache SpMPV scaling on BDW is not linear
(parallel efficiency ε = 67.5% at all cores), which differs from the microbench-
mark results in Fig. 5a. The main reason is the active Turbo mode, causing the
clock speed to drop by 25% when using all cores (BDW: 3.6 GHz at single core
to 2.7 GHz at full socket; CLX: 3.8 GHz at single core to 2.8 GHz at full socket).

L3 Cache Replacement Policy. We have seen in Sect. 4.1 that CLX has
a more sophisticated adaptive L3 cache replacement policy, which allows it to
extend the caching effect for working sets as big as ten times the cache size. Here
we show that SpMPV can profit from this as well. We choose three matrices
that are within five times the L3 cache size (index 2, 3, and 4 in Table 2) and a
moderately large matrix that is 37 times bigger than the L3 cache (index 5 in
Table 2).

Figure 8b shows the full-socket performance and memory transfer volume
for the four matrices. Theoretically, with a least-recently used (LRU) pol-
icy the benchmark requires a minimum memory data transfer volume of
12 + 28/Nnzr bytes per non-zero entry of the matrix [3]. This lower limit is shown
in Fig. 8b (right panel) with dashed lines. We can observe that in some cases the

Table 2. Details of the benchmark matrices. Nr is the number of matrix rows, Nnz is
the number of nonzeros, and Nnzr = Nnz/Nr. The last column shows the total memory
footprint of the matrix (in CRS storage format).

Index Matrix name Nr Nnz Nnzr Size (MB)

1 ct20stif 52,329 2,698,463 52 32

2 boneS01 127,224 6,715,152 53 81

3 ship 003 121,728 8,086,034 66 97

4 pwtk 217,918 11,634,424 53 140

5 dielFilterV3real 1,102,824 89,306,020 81 1072

426 C. L. Alappat et al.

0 5 10 15 20
Active cores

0

10

20

30

40

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

CLX
BDW

ct20stif (32 MB)

(a) L3 scalability

CLX BDW
0

5

10

15

20

Pe
rf

or
m

an
ce

(G
Fl

op
/s

)

boneS01 (81 MB) ship 003 (97 MB)

pwtk (140 MB) dielFilterV3real (1072 MB)

CLX BDW
0

5

10

M
em

or
y

da
ta

tr
af

fic
(B

/N
nz

)

(b) L3 cache replacement

Fig. 8. SpMPV benchmark results on CLX and BDW (CoD/SNC off, Turbo mode).
(a) Performance for the ct20stif matrix, which fits in the L3 cache. (b) Performance
and memory data transfer volume for four different matrices. Dashed lines mark upper
limits from a roofline model using the saturated load-only memory bandwidth.

actual memory traffic is lower than the theoretical minimum, because the L3
cache can satisfy some of the cacheline requests. Even though CLX and BDW
have almost the same amount of cache, the effect is more prominent on CLX.
On BDW it is visible only for the boneS01 matrix, which is 1.7× bigger than
its L3 cache, while on CLX it can be observed even for larger matrices. This is
compatible with the microbenchmark results in Sect. 4.1. For some matrices the
transfer volume is well below 12 bytes per entry, which indicates that not just
the vectors but also some fraction of the matrix stays in cache.

As shown in the left panel of Fig. 8b, the decrease in memory traffic directly
leads to higher performance. For two matrices on CLX the performance is higher
than the maximum predicted by the roofline model (dashed line) even when using
the highest attainable memory bandwidth (load-only). This is in line with data
presented in [3].

6.3 HPCG – High Performance Conjugate Gradient

HPCG5 (High Performance Conjugate Gradient) is a popular memory-bound
proxy application which mimics the behavior of many realistic sparse iterative
algorithms. However, there has been little work to date on analytic performance
modeling of this benchmark. In this section we analyze HPCG using the roofline
approach.

The HPCG benchmark implements a preconditioned conjugate gradient
(CG) algorithm with a multi-grid (MG) preconditioner. The linear system is
derived from a 27-point stencil discretization, but the corresponding sparse
matrix is explicitly stored. The benchmark uses the two BLAS-1 kernels DOT
and WAXPBY and two kernels (SpMV and MG) involving the sparse matrix.

5 http://www.hpcg-benchmark.org/.

http://www.hpcg-benchmark.org/

Understanding HPC Benchmark Performance 427

Algorithm 2. HPCG
1: while k ≤ iter & rnorm/r0 > tol do
2: z = MG(A,r) − > MG sweep
3: oldrtz = rtz
4: rtz = 〈r,z〉 − > DOT
5: β = rtz/oldrtz
6: p = β ∗ p + z − > WAXPBY
7: Ap = A ∗ p − > SpMPV
8: pAp = 〈p,Ap〉 − > DOT
9: α = rtz/pAp

10: x = x + α ∗ p − > WAXPBY
11: r = r − α ∗ Ap − > WAXPBY
12: rnorm = 〈r,r〉 − > DOT
13: rnorm = sqrt(rnorm)
14: k + +

The chip-level performance of HPCG should thus be governed by the mem-
ory bandwidth of the processor. Since the benchmark prints the Gflop/s per-
formance of all kernels after a run, this should be straightforward to corrobo-
rate. However, the bandwidth varies a lot across different kernels in HPCG (see
Table 3): For the WAXPBY kernel (w[i]=a*x[i]+y[i]), which has a code bal-
ance of 12 byte/flop6, the reported performance is 5.14 Gflop/s on a full socket
of BDW. On the other hand, for the DOT kernel with a reported code balance
of 8 byte/flop the benchmark reports a performance of 10.16 Gflop/s. According
to the roofline model this translates into memory bandwidths of 61.7 Gbyte/s
and 81.3 Gbyte/s, respectively. The latter value is substantially higher than any
STREAM value presented for BDW in Fig. 6. In the following, we use perfor-
mance analysis and measurements to explore the cause of this discrepancy, and
to check whether the HPCG kernel bandwidths are in line with the microbench-
mark analysis.

Setup. For this analysis we use the recent reference variant of HPCG (version
3.1), which is a straightforward implementation using hybrid MPI+OpenMP
parallelization. However, the local symmetric Gauss-Seidel (symGS) smoother
used in MG has a distance-1 dependency and is not shared-memory parallel.
The main loop of the benchmark is shown in Algorithm2, where A is the sparse
matrix stored in CRS format.

As the symGS kernel consumes more than 80% of the entire runtime, the
benchmark is run with pure MPI using one process per core. The code imple-
ments weak scaling across MPI processes; we choose a local problem size of
1603 for a working set of about 1.3 GB per process. The maximum number of
CG iteration was set at 25, the highest compiler optimization flag was used

6 The plain WAXPBY kernel has a code balance of 16 byte/flop if a write-allocate
transfer must be accounted for; however, in HPCG it is called with w[] and x[]

being the same array, so no write-allocate applies.

428 C. L. Alappat et al.

(see Table 1), and the contiguous storage of sparse matrix data structures was
enabled (-DHPCG CONTIGUOUS ARRAYS).

Performance Analysis of Kernels. We use the roofline model to model each of
the four kernels separately. Due to their strongly memory-bound characteristics,
an upper performance limit is given by Px = bs/Cx, where bs is the full-socket
(saturated) memory bandwidth and Cx is the code balance of the kernel x. As
we have a mixture of BLAS-1 (Nr iterations) and sparse (Nnz iterations) kernels,
Cx is computed in terms of bytes required and work done per row of the matrix.

The reference implementation has three DOT kernels (see Algorithm 2). Two
of them need two input vectors (lines 4 and 8 in Algorithm2) and the other
requires just one (norm computation in line 12), resulting in a total average code
balance of CDOT = ((2 ·16+8)/3) byte/row = 13.3 byte/row. All three WAXPBY
kernels need one input vector and one vector to be both loaded and stored, result-
ing in CWAXPBY = 24 byte/row. For sparse kernels, the total data transferred for
the inner Nnzr iterations has to be considered. As shown in Sect. 6.2, the opti-
mal code balance for SpMV is 12 + 28/Nnzr bytes per non-zero matrix entry,
i.e., CSpMV = (12Nnzr + 28) byte/row. Note that this is substantially different
from the model derived in [13]: We assume that the RHS vector is loaded only
once, which makes the model strictly optimistic but is a good approximation
for well-structured matrices like the one in HPCG. For the MG preconditioner
we consider only the finest grid since the coarse grids do not substantially con-
tribute to the overall runtime. Therefore the MG consists mainly of one symGS
pre-smoothing step followed by one SpMV and one symGS post-smoothing step.
The symGS comprises a forward sweep (0:nrows) followed by a backward sweep
(nrows:0). Both have the same optimal code balance as SpMV, which means
that the entire MG operation has a code balance of five times that of SpMV:
CMG = 5CSpMV.

The correctness of the predicted code balance can be verified using perfor-
mance counters. We use the likwid-perfctr tool to count the number of main
memory data transfers for each of the kernels.7 Table 3 summarizes the pre-
dicted and measured code balance values for full-socket execution along with
the reported performance and number of flops per row for the four kernels in
HPCG. Except for DDOT, the deviation between predicted and measured code
balance is less than 10%.

MPI Desynchronization. Surprisingly, DDOT has a measured code balance that
is lower than the model, pointing towards caching effects. However, a single
input vector for DDOT has a size of 560 MB, which is more than ten times the
available cache size. As shown in Sect. 4.1, even CLX is not able to show any
significant caching effect with such working sets. Closer investigation revealed
desynchronization of MPI processes to be the reason for the low code balance:
In Algorithm 2 we can see that the DOT kernels can reuse data from previous

7 See https://github.com/RRZE-HPC/likwid/wiki/TestAccuracy for validation of the
data groups.

https://github.com/RRZE-HPC/likwid/wiki/TestAccuracy

Understanding HPC Benchmark Performance 429

0 2 4 6 8 10 12 14 16 18
Active cores

0

2

4

6

8

10

12
Pe

rf
or

m
an

ce
 (G

Fl
op

/s
)

DDOT
WAXPBY
SpMV
MG
HPCG

(a) BDW

0 2 4 6 8 10 12 14 16 18 20
Active cores

0
2
4
6
8

10
12
14
16
18

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

DDOT
WAXPBY
SpMV
MG
HPCG

(b) CLX

Fig. 9. Performance of different kernels in the HPCG benchmark (reference implemen-
tation) as a function of active cores.

Table 3. Summary of the roofline performance model parameters and measurements
for HPCG kernels. Predicted and measured values for code balance and performance
are shown in columns three to six. The last two columns compare the predicted and
measured performance of the entire solver.

Arch Kernels Code balance (Cx) Performance (Px) Flops (Fx) Calls (Ix) HPCG perf.

Pred. Measured Pred. Measured Pred. Measured

byte/row byte/row Gflop/s Gflop/s flops/row Gflop/s Gflop/s

BDW DDOT 13.30 11.13 10.23 10.16 2 3 10.27 8.98

WAXPBY 24.00 24.11 5.67 5.14 2 3

SpMV 352.00 385.61 10.43 9.28 54 1

MG 1760.00 1952.09 10.43 9.04 270 1

CLX DDOT 13.30 12.68 17.29 14.34 2 3 17.37 13.95

WAXPBY 24.00 24.02 9.58 8.39 2 3

SpMV 352.00 382.68 17.64 14.46 54 1

MG 1760.00 1944.31 17.64 14.05 270 1

kernels. For example, the last DOT (line 12) reuses the r vector from the preced-
ing WAXPBY. Therefore, if MPI processes desynchronize such that only some
of them are already in DOT while the others are still in preceding kernels (like
WAXPBY), then the processes in DOT can reuse the data, while the others
just need to stream data as there is no reuse. To have a measurable perfor-
mance impact of the desynchronization phenomenon, a kernel x should satisfy
the following criteria:

– no global synchronization point between x and its preceding kernel(s),
– some of the data used by x and its predecessor(s) are the same,
– the common data used by the kernels should have a significant contribution

in the code balance (Cx) of the kernel.

430 C. L. Alappat et al.

In Algorithm 2, DOT is the only kernel that satisfies all these conditions and
hence it shows the effect of desynchronization.

This desynchronization effect is not predictable and will vary across runs
and machines as can be observed in the significant performance fluctuation of
DOT in Fig. 9. To verify our assumption we added barriers before the DOT
kernels, which caused the measured CDOT to go up to 13.3 byte/row, matching
the expected value. The desynchronization effect clearly shows the importance
of analyzing statistical fluctuations and deviations from performance models.
Ignoring them can easily lead to false conclusions about hardware characteristics
and code behavior. Desynchronization is a known phenomenon in memory-bound
MPI code that can have a decisive influence on performance. See [2] for recent
research.

Combining Kernel Predictions. Once the performance predictions for individual
kernels are in place, we can combine them to get a prediction of the entire HPCG.
This is done by using a time-based formulation of the roofline model and linearly
combining the predicted kernel runtimes based on their call counts. If Fx is the
number of flops per row and Ix the number of times the kernel x is invoked, the
final prediction is

THPCG =
∑

x

IxTx ∀x ∈ {DOT,WAXPBY,SpMV,MG}, (1)

where Tx = FxNr/Px. (2)

Table 3 gives an overview of Fx, Ix, and Cx for different kernels and compares the
predicted and measured performance on a full socket. The prediction is consis-
tently higher than the model because we used the highest attainable bandwidth
for the roofline model prediction. For Intel processors this is the load-only band-
width bS = 115 Gbyte/s (68 Gbyte/s) for CLX (BDW), which is approximately
10% higher than the STREAM values (see Sect. 5). Figure 9 shows the scaling
performance of the different kernels in HPCG. The typical saturation pattern of
memory-bound code can be observed on both architectures.

7 Conclusions and Outlook

Two recent, state-of-the-art generations of Intel architectures have been ana-
lyzed: Broadwell EP and Cascade Lake SP. We started with a basic microar-
chitectural study concentrating on data access. The analysis showed that our
benchmarks were able to obtain 85% of the theoretical bandwidth limits. For
the first time, the performance effect of Intel’s newly designed shared L3 vic-
tim cache was demonstrated. During the process of microbenchmarking we also
identified the importance of selecting proper benchmark tools and the impact
of various hardware, software, and OS settings, thereby proving the need for
detailed documentation. We further demonstrated that the observations made
in microbenchmark analysis are well reflected in real-world application scenarios.

Understanding HPC Benchmark Performance 431

To this end we investigated the performance characteristics of DGEMM, sparse
matrix-vector multiplication, and HPCG. For the first time, a roofline model of
HPCG and its components was established and successfully validated for both
architectures. Performance modeling was used as a guiding tool throughout this
work to get deeper insight and explain anomalies.

Future work will include investigation of benchmarks for random and latency-
bound codes along with the development of suitable performance models. The
existing and further upcoming wide range of architectures will bring more param-
eters and benchmarking challenges, which will be very interesting and worthwhile
to investigate.

Acknowledgments. We are indebted to Thomas Zeiser and Michael Meier (RRZE)
for providing a reliable benchmarking environment. This work was partially funded
via the ESSEX project in the DFG priority programme 1648 (SPPEXA) and by the
German Ministry of Science and Education (BMBF) under project number 01IH16012C
(SeASiTe).

References

1. Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Press, 2016
June 2016. http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf

2. Afzal, A., Hager, G., Wellein, G.: Desynchronization and wave pattern formation in
MPI-parallel and hybrid memory-bound programs (2020). https://arxiv.org/abs/
2002.02989. Accepted for ISC High Performance 2020

3. Alappat, C.L., et al.: A recursive algebraic coloring technique for hardware-efficient
symmetric sparse matrix-vector multiplication (2020). Accepted for publication in
ACM Transactions on Parallel Computing.https://doi.org/10.1145/3399732

4. ARM: ARM Cortex-A75 Core Technical Reference Manual - Write streaming
mode. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100403
0200 00 en/lto1473834732563.html. Accessed 26 Mar 2020

5. Davis, T.A., Hu, Y.: The University of Florida sparse matrix
collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011).
http://doi.acm.org/10.1145/2049662.2049663

6. Hammond, S., et al.: Evaluating the Marvell ThunderX2 server processor for HPC
workloads. In: The 6th Special Session on High-Performance Computing Bench-
marking and Optimization (HPBench 2019) (2019)

7. Hammond, S., Vaughan, C., Hughes, C.: Evaluating the Intel Skylake Xeon pro-
cessor for HPC workloads. In: 2018 International Conference on High Performance
Computing Simulation (HPCS), pp. 342–349, July 2018. https://doi.org/10.1109/
HPCS.2018.00064

8. Wong, H.: Intel Ivy Bridge Cache replacement policy. http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/

9. Hofmann, J., Fey, D., Eitzinger, J., Hager, G., Wellein, G.: Analysis of Intel’s
haswell microarchitecture using the ECM model and microbenchmarks. In: Hannig,
F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J. (eds.)
ARCS 2016. LNCS, vol. 9637, pp. 210–222. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30695-7 16

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://arxiv.org/abs/2002.02989
https://arxiv.org/abs/2002.02989
https://doi.org/10.1145/3399732
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100403_0200_00_en/lto1473834732563.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100403_0200_00_en/lto1473834732563.html
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1109/HPCS.2018.00064
https://doi.org/10.1109/HPCS.2018.00064
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://doi.org/10.1007/978-3-319-30695-7_16
https://doi.org/10.1007/978-3-319-30695-7_16

432 C. L. Alappat et al.

10. Hofmann, J., Hager, G., Fey, D.: On the accuracy and usefulness of analytic energy
models for contemporary multicore processors. In: Yokota, R., Weiland, M., Keyes,
D., Trinitis, C. (eds.) ISC High Performance 2018. LNCS, vol. 10876, pp. 22–43.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92040-5 2

11. Hofmann, J., Hager, G., Wellein, G., Fey, D.: An analysis of core- and chip-level
architectural features in four generations of intel server processors. In: Kunkel,
J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp.
294–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 16

12. Malas, T.M., Hager, G., Ltaief, H., Keyes, D.E.: Multidimensional intratile paral-
lelization for memory-starved stencil computations. ACM Trans. Parallel Comput.
4(3), 12:1–12:32 (2017). http://doi.acm.org/10.1145/3155290

13. Marjanović, V., Gracia, J., Glass, C.W.: Performance modeling of the HPCG
benchmark. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014.
LNCS, vol. 8966, pp. 172–192. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17248-4 9

14. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Comput. Soc. Tech. Comm. Comput. Archit. (TCCA)
Newsl. 2, 19–25 (1995)

15. McIntosh-Smith, S., Price, J., Deakin, T., Poenaru, A.: A per-
formance analysis of the first generation of HPC-optimized arm
processors. Concurr. Comput.: Pract. Exp. 31(16), e5110 (2019).
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5110. e5110 cpe.5110

16. McVoy, L., Staelin, C.: Lmbench: portable tools for performance analysis. In: Pro-
ceedings of the 1996 Annual Conference on USENIX Annual Technical Conference
ATEC 1996, pp. 23–23. USENIX Association, Berkeley (1996). http://dl.acm.org/
citation.cfm?id=1268299.1268322

17. Molka, D., Hackenberg, D., Schöne, R.: Main memory and cache performance of
Intel Sandy Bridge and AMD Bulldozer. In: Proceedings of the Workshop on Mem-
ory Systems Performance and Correctness MSPC 2014, pp. 4:1–4:10. ACM, New
York (2014). http://doi.acm.org/10.1145/2618128.2618129

18. Pieper, A., et al.: High-performance implementation of Chebyshev filter diago-
nalization for interior eigenvalue computations. J. Comput. Phys. 325, 226–243
(2016). http://www.sciencedirect.com/science/article/pii/S0021999116303837

19. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion
policies for high performance caching. In: Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture ISCA 2007, pp. 381–391. ACM, New
York (2007). http://doi.acm.org/10.1145/1250662.1250709

20. Saini, S., Hood, R.: Performance evaluation of Intel Broadwell nodes based super-
computer using computational fluid dynamics and climate applications. In: 2017
IEEE 19th International Conference on High Performance Computing and Com-
munications Workshops (HPCCWS), pp. 58–65, December 2017. https://doi.org/
10.1109/HPCCWS.2017.00015

21. Saini, S., Hood, R., Chang, J., Baron, J.: Performance evaluation of an Intel
Haswell- and Ivy Bridge-based supercomputer using scientific and engineer-
ing applications. In: 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS), pp. 1196–1203, December 2016. https://doi.org/
10.1109/HPCC-SmartCity-DSS.2016.0167

https://doi.org/10.1007/978-3-319-92040-5_2
https://doi.org/10.1007/978-3-319-58667-0_16
http://doi.acm.org/10.1145/3155290
https://doi.org/10.1007/978-3-319-17248-4_9
https://doi.org/10.1007/978-3-319-17248-4_9
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5110
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://doi.acm.org/10.1145/2618128.2618129
http://www.sciencedirect.com/science/article/pii/S0021999116303837
http://doi.acm.org/10.1145/1250662.1250709
https://doi.org/10.1109/HPCCWS.2017.00015
https://doi.org/10.1109/HPCCWS.2017.00015
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0167
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0167

Understanding HPC Benchmark Performance 433

22. Staar, P.W.J., et al.: Stochastic matrix-function estimators: scalable big-data ker-
nels with high performance. In: 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 812–821, May 2016. https://doi.org/10.1109/
IPDPS.2016.34

23. Suhov, A.Y.: An accurate polynomial approximation of exponential integrators. J.
Sci. Comput. 60(3), 684–698 (2014). https://doi.org/10.1007/s10915-013-9813-x

24. Treibig, J., Hager, G., Wellein, G.: likwid-bench: an extensible microbenchmarking
platform for x86 multicore compute nodes. In: Brunst, H., Müller, M., Nagel, W.,
Resch, M. (eds.) Parallel Tools Workshop, pp. 27–36. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-31476-6 3

25. Wellein, G., Hager, G., Zeiser, T., Wittmann, M., Fehske, H.: Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization. In:
2009 33rd Annual IEEE International Computer Software and Applications Con-
ference, vol. 1, pp. 579–586, July 2009. https://doi.org/10.1109/COMPSAC.2009.
82

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/IPDPS.2016.34
https://doi.org/10.1109/IPDPS.2016.34
https://doi.org/10.1007/s10915-013-9813-x
https://doi.org/10.1007/978-3-642-31476-6_3
https://doi.org/10.1109/COMPSAC.2009.82
https://doi.org/10.1109/COMPSAC.2009.82
http://creativecommons.org/licenses/by/4.0/

	Understanding HPC Benchmark Performance on Intel Broadwell and Cascade Lake Processors
	1 Introduction
	2 Testbed and Environment
	3 Single-Core Bandwidth Analysis
	4 Intel's New Shared L3 Victim Cache
	4.1 L3 Cache Replacement Policy
	4.2 L3 Scalability

	5 Multi-core Scaling with STREAM
	6 Implications for Real-World Applications
	6.1 DGEMM—Double-Precision General Matrix-Matrix Multiplication
	6.2 SpMPV – Sparse Matrix-Power-Vector Multiplication
	6.3 HPCG – High Performance Conjugate Gradient

	7 Conclusions and Outlook
	References

